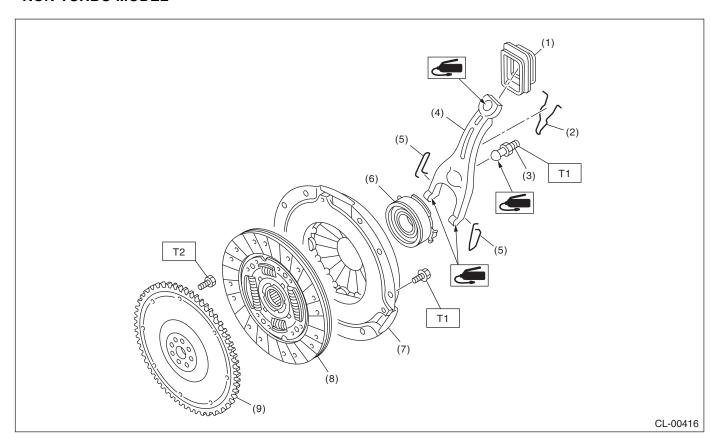
CLUTCH SYSTEM

1. General Description

A: SPECIFICATION

Model		2.5 L TURBO 2.5 L NON-TURBO			
Clutch	Туре		Push type		
cover	Diaphragm set load kgf (lbf)		800 (1,764)	580 (1,279)	
	Facing material		Woven (Non asbestos)		
	O.D. × I.D. × thickness	Pressure plate side	230 × 155 × 3.5 (9.06 × 6.10 × 0.138)	225 × 150 × 3.5 (8.86 × 5.9 ×	
Clutch disc	mm (in)	Flywheel side	230 × 155 × 3.2 (9.06 × 6.10 × 0.126)	0.138)	
	Spline O.D.	mm (in)	25.2 (0.992), (No. of teeth: 24)		
Clutch releas	Clutch release lever ratio		1.6		
Release bea	Release bearing		Grease-packed self-aligning		
Clutch	Full stroke mm (in)		130 — 135 (5.12 — 5.31)		
pedal	Free play mm (in)		4 — 11 (0.16 — 0.43)		
Release lever	Stroke mm (in)		11.1 — 12.5 (0.437 — 0.492)	12.1 —13.5 (0.48 —0.53)	
	Depth of rivet head Side		1.65 —2.25 (0.065 — 0.089)		
Clutch dica		Flywheel side	1.35 —1.95 (0.053 — 0.077)		
Clutch disc	mm (in)	Limit of sink- ing	0.3 (0.012)		
	Limit for deflection	mm (in)	0.7 (0.028) at R = 110 (4.33)		


Model			2.5 L TURBO STI	
Clutch	Туре		Pull type	
cover Diaphragm set load kgf (lbf)		930 (2,050)		
	Facing material		Woven (Non asbestos)	
Clutch disc	$O.D. \times I.D. \times thickness$ mm (in)		Flywheel side: $240 \times 160 \times 3.2$ (9.45 × 6.30 × 0.126) Clutch cover side: $240 \times 160 \times 3.5$ (9.45 × 6.30 × 0.138)	
	Spline O.D.	mm (in)	25.2 (0.992), (No. of teeth: 24)	
Clutch releas	e lever ratio		1.7	
Release bear	Release bearing		Grease-packed self-aligning	
Clutch	Full stroke mm (in)		130 — 135 (5.12 — 5.31)	
pedal	Free play mm (in)		3 — 13 (0.12 — 0.51)	
Release lever	Stroke	mm (in)	13.3 — 14.7 (0.524 — 0.579)	
	Depth of rivet head	Standard	Flywheel side: 1.35 — 1.95 (0.053 — 0.077) Clutch cover side: 1.65 — 2.25 (0.065 — 0.089)	
Clutch disc	mm (in)	Limit of sink- ing	0.3 (0.012)	
	Limit for deflection	mm (in)	0.7 (0.028) at R = 115 (4.53)	

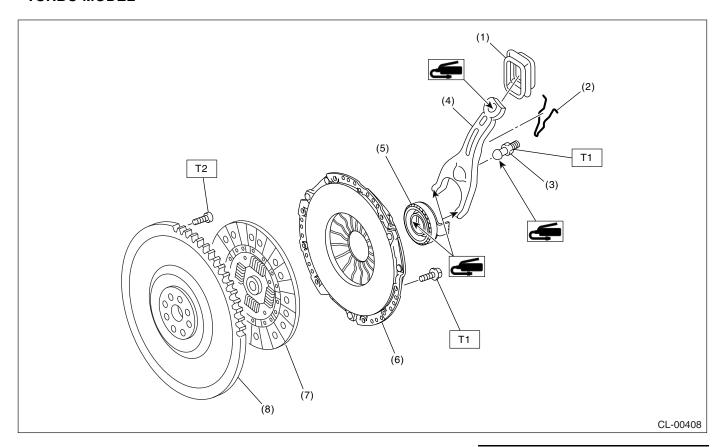
I.D.: Inner diameter O.D.: Outer diameter

B: COMPONENT

1. CLUTCH ASSEMBLY

• NON-TURBO MODEL

- (1) Dust cover
- (2) Lever spring
- (3) Pivot
- (4) Release lever
- (5) Clip


- (6) Release bearing
- (7) Clutch cover
- (8) Clutch disc
- (9) Flywheel

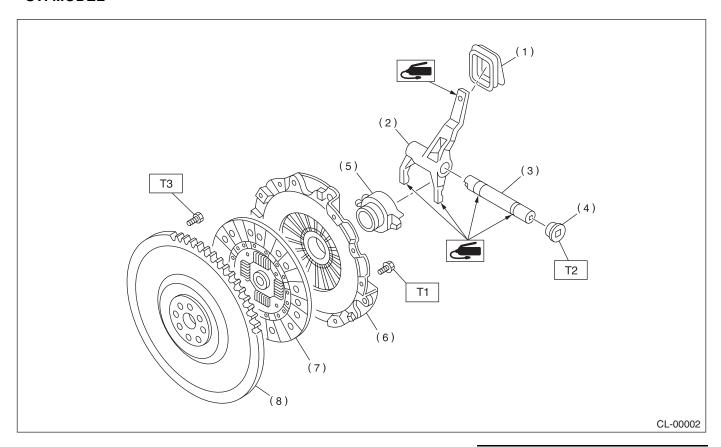
Tightening torque: N⋅m (kgf-m, ft-lb)

T1: 16 (1.6, 11.8)

T2: 72 (7.3, 52.8)

• TURBO MODEL

- (1) Dust cover
- (2) Lever spring
- (3) Pivot
- (4) Release lever


- (5) Release bearing
- (6) Clutch cover
- (7) Clutch disc
- (8) Flywheel

Tightening torque: N·m (kgf-m, ft-lb)

T1: 16 (1.6, 11.8)

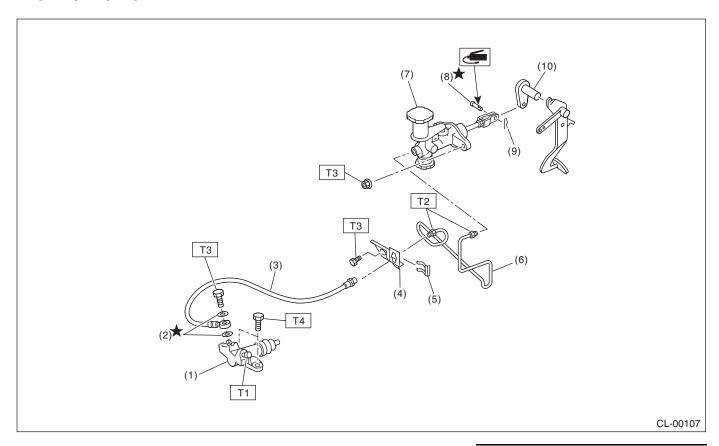
T2: 72 (7.3, 52.8)

• STI MODEL

- (1) Dust cover
- (2) Release lever
- (3) Clutch release lever shaft
- (4) Plug

- (5) Release bearing
- (6) Clutch cover
- (7) Clutch disc
- (8) Flywheel

Tightening torque: N·m (kgf-m, ft-lb)


T1: 16 (1.6, 11.8)

T2: 44 (4.5, 32.5)

T3: 75 (7.6, 55.3)

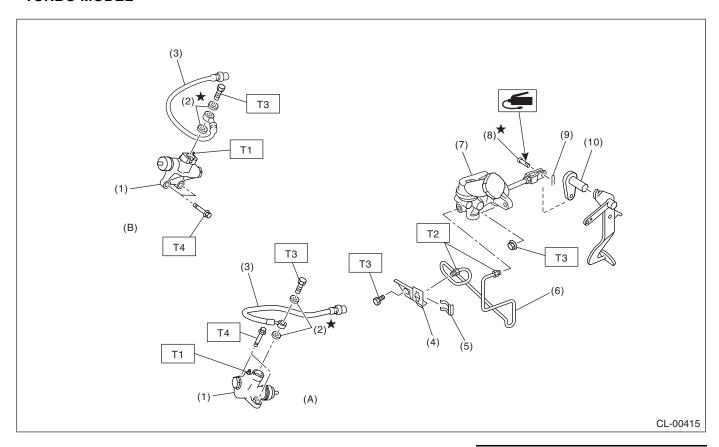
2. CLUTCH PIPE AND HOSE

• NON-TURBO MODEL

- (1) Operating cylinder
- (2) Washer
- (3) Clutch hose
- (4) Bracket
- (5) Clip

- (6) Clutch pipe
- (7) Master cylinder ASSY
- (8) Clevis pin
- (9) Snap pin
- (10) Lever

Tightening torque: N⋅m (kgf-m, ft-lb)


T1: 7.8 (0.8, 5.8)

T2: 15 (1.5, 10.8)

T3: 18 (1.8, 13.3)

T4: 37 (3.8, 27.5)

• TURBO MODEL

- (A) Turbo model
- (1) Operating cylinder
- (2) Washer
- (3) Clutch hose
- (4) Bracket
- (5) Clip

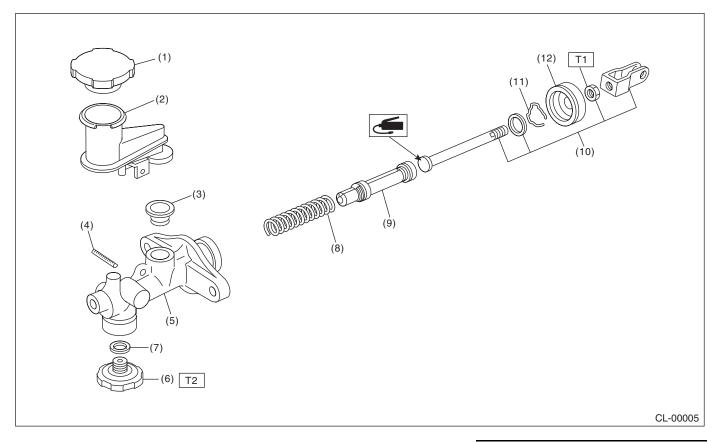
- (B) STI model
- (6) Clutch pipe
- (7) Master cylinder ASSY
- (8) Clevis pin
- (9) Snap pin
- (10) Lever

Tightening torque: N·m (kgf-m, ft-lb)

T1: 7.8 (0.8, 5.8)

T2: 15 (1.5, 10.8) T3: 18 (1.8, 13.3)

T4: Except STI model


37 (3.8, 27.5)

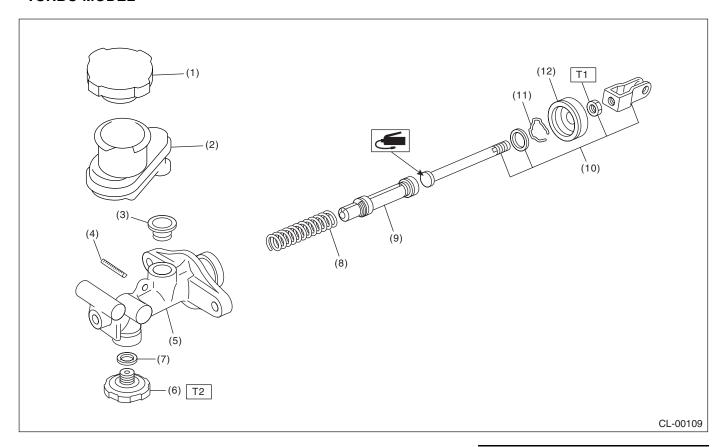
STI model

41 (4.2, 30.2)

3. MASTER CYLINDER

• NON-TURBO MODEL

- (1) Reservoir cap
- (2) Reservoir tank
- (3) Oil seal
- (4) Straight pin
- (5) Master cylinder
- (6) Clutch damper


- (7) Gasket
- (8) Return spring
- (9) Piston
- (10) Push rod ASSY
- (11) Piston stop ring
- (12) Cylinder boot

Tightening torque: N·m (kgf-m, ft-lb)

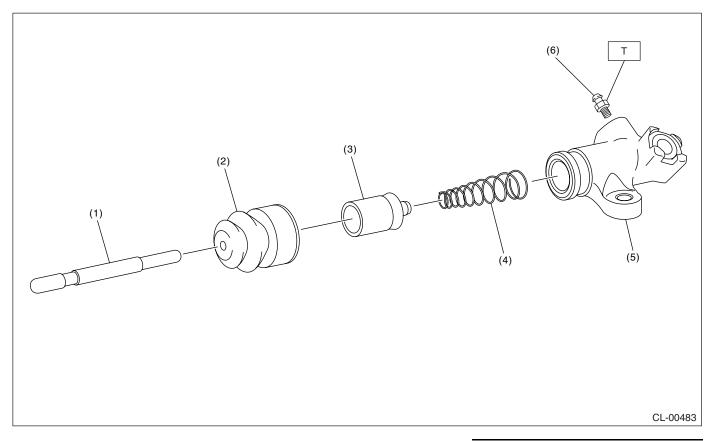
T1: 10 (1.0, 7)

T2: 46.6 (4.75, 34.4)

• TURBO MODEL

- (1) Reservoir cap
- (2) Reservoir tank
- (3) Oil seal
- (4) Straight pin
- (5) Master cylinder
- (6) Clutch damper

- (7) Gasket
- (8) Return spring
- (9) Piston
- (10) Push rod ASSY
- (11) Piston stop ring
- (12) Cylinder boot

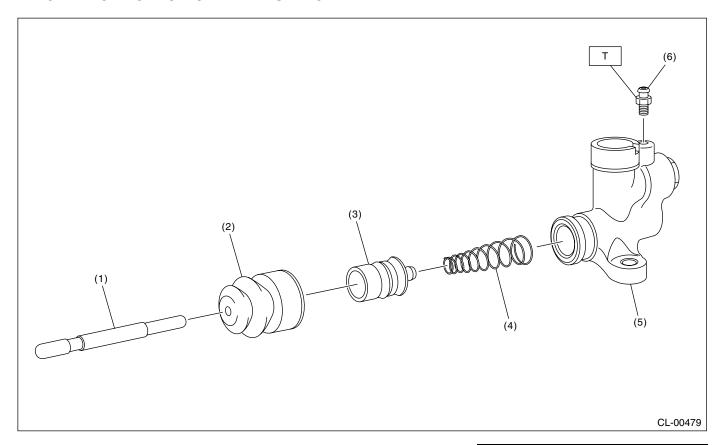

Tightening torque: N⋅m (kgf-m, ft-lb)

T1: 10 (1.0, 7)

T2: 46.6 (4.75, 34.4)

4. OPERATING CYLINDER

• NON-TURBO MODEL

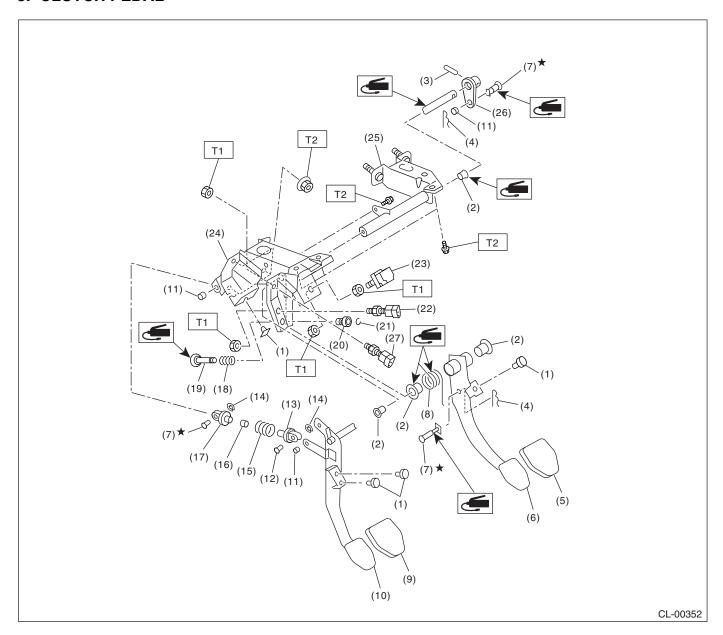


- (1) Push rod
- (2) Boot
- (3) Piston

- (4) Piston spring
- (5) Operating cylinder
- (6) Bleeder screw

Tightening torque: N⋅m (kgf-m, ft-lb)
T: 8 (0.8, 5.8)

• EXCEPT NON-TURBO MODEL AND STI MODEL



- (1) Push rod
- (2) Boot
- (3) Piston

- (4) Piston spring
- (5) Operating cylinder
- (6) Bleeder screw

Tightening torque: N·m (kgf-m, ft-lb)
T: 8 (0.8, 5.8)

5. CLUTCH PEDAL

- (1) Stopper
- (2) Bushing
- (3) Spring pin
- (4) Snap pin
- (5) Brake pedal pad
- (6) Brake pedal
- (7) Clevis pin
- (8) Brake pedal spring
- (9) Clutch pedal pad
- (10) Clutch pedal
- (11) Bushing C
- (12) Clutch clevis pin

- (13) Assist rod A
- (14) Clip
- (15) Assist spring
- (16) Assist bushing
- (17) Assist rod B
- (18) Spring S
- (19) Rod S
- (20) Bushing S
- (21) Clip
- (22) Clutch switch (Model with cruise control)
- (23) Stop light switch

- (24) Pedal bracket
- (25) Clutch master cylinder bracket
- (26) Lever
- (27) Clutch switch (Starter interlock)

Tightening torque: N·m (kgf-m, ft-lb)

T1: 8 (0.8, 5.9)

T2: 18 (1.8, 13.3)

C: CAUTION

- Wear work clothing, including a cap, protective goggles, and protective shoes during operation.
- Remove contamination including dirt and corrosion before removal, installation or disassembly.
- Keep the disassembled parts in order and protect them from dust and dirt.
- Before removal, installation or disassembly, be sure to clarify the failure. Avoid unnecessary removal, installation, disassembly and replacement.
- Be careful not to burn yourself, because each part on the vehicle is hot after running.
- Use Subaru genuine fluid, grease etc. or the equivalent. Do not mix fluid, grease etc. with that of another grade or from other manufacturers.

- Be sure to tighten fasteners including bolts and nuts to the specified torque.
- Place shop jacks or rigid racks at the specified points.
- Apply grease onto sliding or revolution surfaces before installation.
- Before installing O-rings or snap rings, apply sufficient amount of fluid to avoid damage and deformation.
- Before securing a part on a vise, place cushioning material such as wood blocks, aluminum plate, or shop cloth between the part and the vise.
- Keep fluid away from the vehicle body. If any fluid contacts the vehicle body, immediately flush the area with water.

D: PREPARATION TOOL

1. SPECIAL TOOL

ILLUSTRATION	TOOL NUMBER	DESCRIPTION	REMARKS
0	498497100	CRANKSHAFT STOPPER	Used for stopping rotation of flywheel when loosening tightening bolt, etc.
ST-498497100			
	499747100	CLUTCH DISC GUIDE	Used when installing clutch disc to flywheel.
ST-499747100			

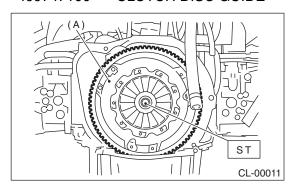
2. GENERAL TOOL

TOOL NAME	REMARKS
Circuit tester	Used for measuring resistance, voltage and ampere.
Dial gauge	Used for measuring clutch disc run-out.
Depth gauge	Used for measuring clutch disc wear.

2. Clutch Disc and Cover A: REMOVAL

1) Remove the transmission assembly from vehicle body.

5MT:


<Ref. to 5MT-26, REMOVAL, Manual Transmission Assembly.>

6MT:

<Ref. to 6MT-35, REMOVAL, Manual Transmission Assembly.>

2) Install the ST on flywheel.

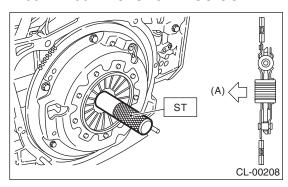
ST 499747100 CLUTCH DISC GUIDE

(A) Clutch cover

3) Remove the clutch cover and clutch disc.

NOTE:

- Take care not to allow oil on the clutch disc facing.
- Do not disassemble the clutch cover and clutch disc.
- Be sure to put alignment marks on the flywheel and clutch cover before removing clutch cover.

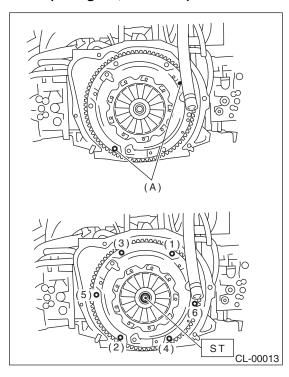

B: INSTALLATION

1) Insert the ST into clutch disc and install them on the flywheel by inserting the ST end into pilot bearing.

NOTE:

When installing the clutch disc, be careful to its direction.

ST 499747100 CLUTCH DISC GUIDE


(A) Flywheel side

2) Install the clutch cover on flywheel and tighten the bolts to specified torque.

NOTE:

- When reinstalling, align the alignment marks.
- When installing a new clutch cover, position the clutch cover so that there is a gap of 120° or more between "0" marks on the flywheel and clutch cover. ("0" marks indicate the directions of residual unbalance.)
- Note the front and rear of the clutch disc when installing.
- Tighten the clutch cover installing bolts gradually. Each bolt should be tightened to the specified torque in a crisscross order.

Tightening torque: 16 N·m (1.6 kgf-m, 11.8 ft-lb)

(A) "0" marks

3) Remove the ST.

ST 499747100 CLUTCH DISC GUIDE

4) Install the transmission assembly.

5MT

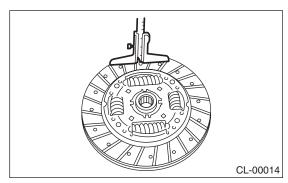
<Ref. to 5MT-28, INSTALLATION, Manual Transmission Assembly.>

6MT

<Ref. to 6MT-37, INSTALLATION, Manual Transmission Assembly.>

C: INSPECTION

1. CLUTCH DISC

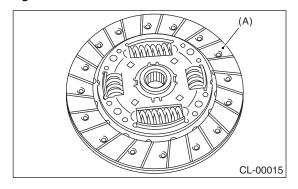

1) Facing wear

Measure the depth of rivet head from the surface of facing. Replace if facings are worn locally or worn down to less than the specified value.

Depth of rivet head: Limit of sinking 0.3 mm (0.012 in)

NOTE:

Do not wash the clutch disc with any cleaning fluid.



2) Hardened facing

Correct by using emery paper or replace.

3) Oil leakage on facing

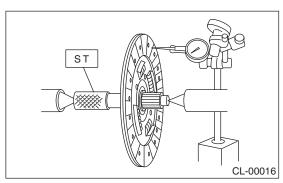
Replace the clutch disc and inspect the transmission front oil seal, transmission case mating surface, engine rear oil seal and other points for oil leakage.

(A) Clutch facing

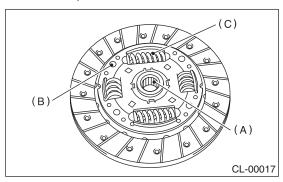
4) Deflection on facing

If deflection exceeds the specified value at the outer circumference of facing, repair or replace.

ST 499747100 CLUTCH DISC GUIDE


Limit for deflection:

Non-turbo model

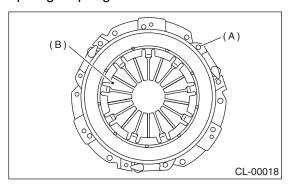

0.7 mm (0.028 in) at R = 107.5 mm (4.23 in) Turbo model

0.7 mm (0.028 in) at R = 110 mm (4.33 in) STI model

0.7 mm (0.028 in) at R = 115 mm (4.53 in)

5) If worn spline, loose rivets or damper spring failure is found, replace the clutch disc.

- (A) Spline
- (B) Rivet
- (C) Damper spring


2. CLUTCH COVER

NOTE

Visually check for the following items without disassembling, and replace or repair if defective.

1) Loose thrust rivet

2) Damaged or worn bearing contact area at center of diaphragm spring

- (A) Thrust rivet
- (B) Diaphragm spring

3. Flywheel

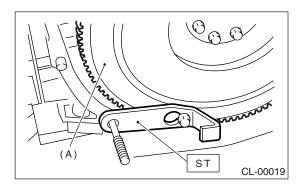
A: REMOVAL

1) Remove the transmission assembly.

5MT:

<Ref. to 5MT-26, REMOVAL, Manual Transmission Assembly.>

6MT:

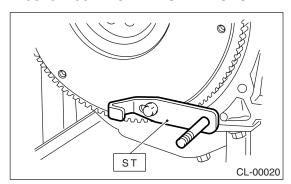

<Ref. to 6MT-35, REMOVAL, Manual Transmission Assembly.>

2) Remove the clutch cover and clutch disc. <Ref.

to CL-14, REMOVAL, Clutch Disc and Cover.>

3) Using the ST. remove the flywheel.

ST 498497100 CRANKSHAFT STOPPER

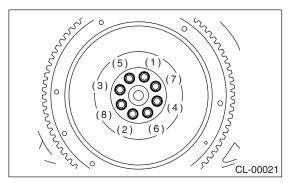


(A) Flywheel

B: INSTALLATION

1) Install the flywheel and ST.

ST 498497100 CRANKSHAFT STOPPER


2) Tighten the flywheel attaching bolts to the specified torque.

NOTE:

Tighten the flywheel installing bolts gradually. Each bolt should be tightened to the specified torque in a crisscross fashion.

Tightening torque: Except STI model 72 N·m (7.3 kgf-m, 52.8 ft-lb) STI model

75 N·m (7.6 kgf-m, 55.3 ft-lb)

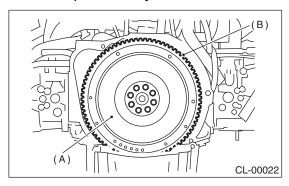
- 3) Install the clutch disc and cover. <Ref. to CL-14, INSTALLATION, Clutch Disc and Cover.>
- 4) Install the transmission assembly.

5MT:

<Ref. to 5MT-28, INSTALLATION, Manual Transmission Assembly.>

6MT:

<Ref. to 6MT-37, INSTALLATION, Manual Transmission Assembly.>


C: INSPECTION

CAUTION:

Since this bearing is grease sealed and is of a non-lubrication type, do not wash with gasoline or any solvent.

1) Damage on sliding surface of facing and ring gear

If defective, replace the flywheel.

- (A) Flywheel
- (B) Ring gear

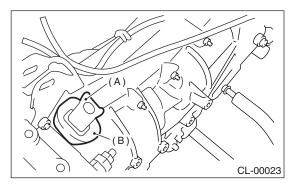
2) Smoothness of rotation

Rotate the ball bearing applying pressure in thrust direction.

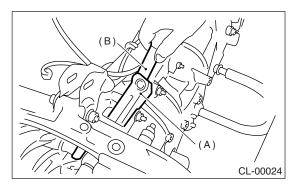
3) If noise or excessive play is noted, replace the flywheel.

4. Release Bearing and Lever

A: REMOVAL


1. EXCEPT STI MODEL

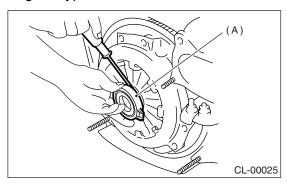
- 1) Remove the transmission assembly from vehicle body.
- <Ref. to 5MT-26, REMOVAL, Manual Transmission Assembly.>
- 2) Remove the two clips from release lever and remove the release bearing. (Non-turbo model)


CAUTION:

Be careful not to deform clips.

- 3) Remove the release bearing from release lever. (Turbo model)
- 4) Remove the dust cover.

- (A) Release lever
- (B) Dust cover
- 5) Remove the lever spring from pivot with a screwdriver by accessing it through clutch housing release lever hole. Then remove the release lever.



- (A) Release lever
- (B) Screwdriver

2. STI MODEL

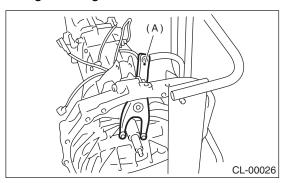
- 1) Remove the transmission assembly from vehicle body.
- <Ref. to 6MT-35, REMOVAL, Manual Transmission Assembly.>
- 2) Remove the release lever from transmission.
- 3) Put the release bearing in engine side.

4) Remove the release bearing from the clutch cover using flat-type screwdriver.

(A) Release bearing

B: INSTALLATION

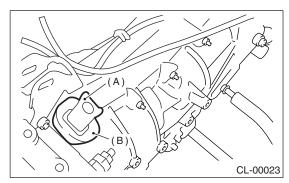
1. EXCEPT STI MODEL


NOTE:

Before or during assembling, lubricate the following points with a light coat of grease.

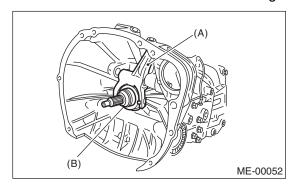
- Contact surface of lever and pivot
- · Contact surface of lever and bearing
- Transmission main shaft spline (Use grease containing molybdenum disulphide.)
- 1) While pushing the release lever to pivot and twisting it to both sides, fit the lever spring onto the constricted portion of pivot.

NOTE:

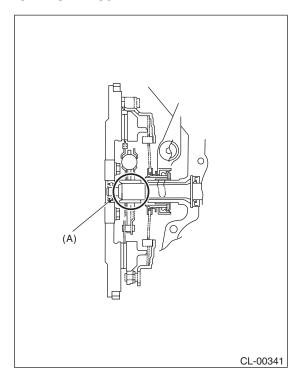

- Apply grease (KOPR-KOTE: Part No. 003603001) to the contact point of release lever and operating cylinder.
- Confirm that the lever spring is securely fitted by observing it through the main case hole.

(A) Release lever

- 2) Install the release bearing and fasten it with two clips. (Non-turbo model)
- 3) Install the release bearing. (Turbo model)


4) Install the dust cover.

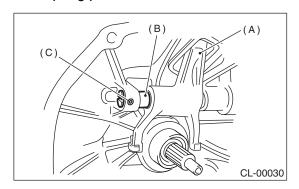
- (A) Release lever
- (B) Dust cover
- 5) Check smooth movement of the bearing with operating release lever.
- 6) Install the transmission assembly.
- <Ref. to 5MT-28, INSTALLATION, Manual Transmission Assembly.>


2. STI MODEL

- 1) Install the release bearing on transmission.
- 2) Insert the release fork into release bearing tab.

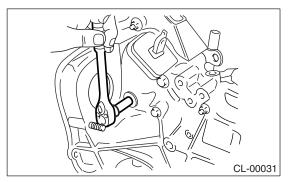
- (A) Release fork
- (B) Release bearing
- 3) Apply grease to the spline portion.

Grease: NICHIMOLY 130



(A) Spline

4) Insert the release fork shaft into release fork.


NOTE:

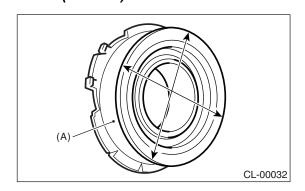
Make sure the cutout portion of release fork shaft contacts spring pin.

- (A) Release fork
- (B) Release shaft
- (C) Spring pin
- 5) Tighten the plug.

Tightening torque: 44 N⋅m (4.5 kgf-m, 32.5 ft-lb)

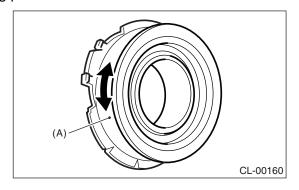
6) Install the transmission assembly. <Ref. to 6MT-37, INSTALLATION, Manual Transmission Assembly.>

C: INSPECTION


1. RELEASE BEARING

CAUTION:

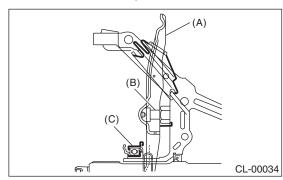
Since this bearing is grease sealed and is of a non-lubrication type, do not wash with gasoline or any solvent when servicing the clutch.


1) Check the bearing for smooth movement by applying force in the radial direction.

Radial direction stroke: 1.4 mm (0.055 in)

(A) Bearing case

2) Check the bearing for smooth rotation by applying pressure in the thrust direction.



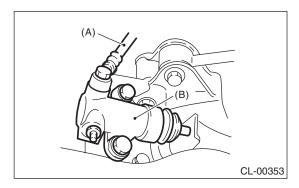
(A) Bearing case

3) Check wear and damage of the bearing case surface contacting with lever.

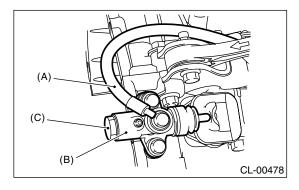
2. RELEASE LEVER

Check the lever pivot portion and the point of contact with release bearing case for wear.

- (A) Release lever
- (B) Pivot
- (C) Release bearing

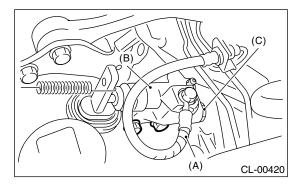

5. Operating Cylinder

A: REMOVAL

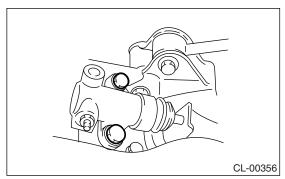

- 1) Remove the air intake chamber (Non-turbo model). <Ref. to IN(H4SO)-6, REMOVAL, Air Intake Chamber.>
- 2) Remove the intercooler. (Turbo model) <Ref. to IN(H4DOTC)-11, REMOVAL, Intercooler.>
- 3) Remove the clutch hose from operating cylinder.

CAUTION:

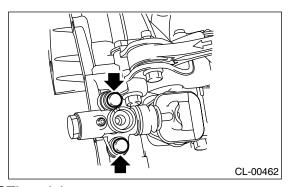
- Cover the hose joint to prevent clutch fluid from flowing out.
- Do not loosen or remove the cap bolt. (Turbo model and STI model)
- Non-turbo model

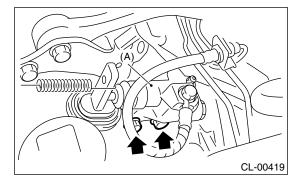


- (A) Clutch hose
- (B) Operating cylinder
- Turbo model



- (A) Clutch hose
- (B) Operating cylinder
- (C) Cap bolt


STI model

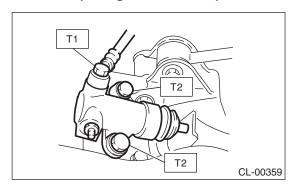

- (A) Clutch hose
- (B) Operating cylinder
- (C) Cap bolt
- 4) Remove the operating cylinder from transmission.
- · Non-turbo model

Turbo model

• STI model

(A) Operating cylinder

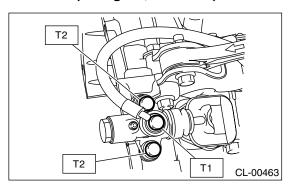
B: INSTALLATION


1) Install in the reverse order of removal.

NOTE:

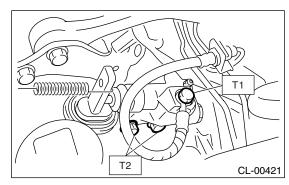
- Before installing the operating cylinder, apply grease (KOPR-KOTE: Part No. 003603001) to contact point of the release lever and operating cylinder.
- For turbo model, bleed air with the operating cylinder attached to clutch hose, and then install it to vehicle. <Ref. to CL-30, STI MODEL, PROCEDURE, Clutch Fluid Air Bleeding.>
- Non-turbo model

Tightening torque:

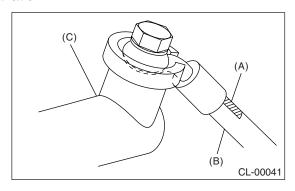

T1: 18 N·m (1.8 kgf-m, 13.3 ft-lb) T2: 37 N·m (3.8 kgf-m, 27.5 ft-lb)

Turbo model

Tightening torque:


T1: 18 N·m (1.8 kgf-m, 13.3 ft-lb) T2: 37 N·m (3.8 kgf-m, 27.5 ft-lb)

STI model


Tightening torque:

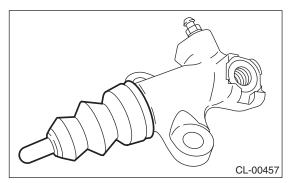
T1: 18 N·m (1.8 kgf-m, 13.3 ft-lb) T2: 41 N·m (4.2 kgf-m, 30.2 ft-lb)

NOTE:

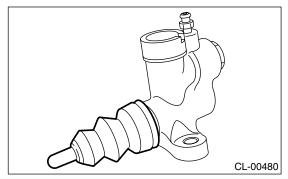
- Be sure to install the clutch hose with the mark side facing upward.
- Be careful not to twist the clutch hose during installation.

- (A) Marking
- (B) Clutch hose
- (C) Operating cylinder
- 2) After bleeding air from the operating cylinder, ensure that clutch operates properly.

<Ref. to CL-29, Clutch Fluid Air Bleeding.>


C: DISASSEMBLY

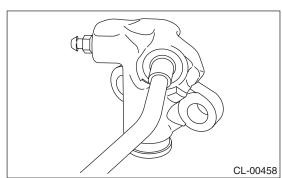
NOTE:


Disassembly for operating cylinder of only 5MT model can be performed. That of 6MT model is a component that cannot be disassembled.

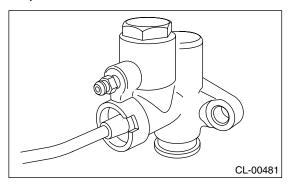
1) Remove the boot and push rod.

Non-turbo model

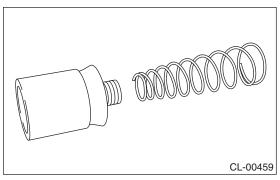
• Except Non-turbo model and STI model

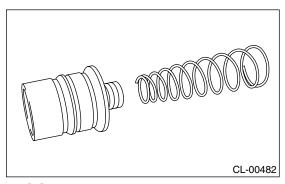


2) Apply compressed air through the clutch hose attaching hole.


NOTE:

Face the piston hole downward and place a wooden block to prevent the piston from jumping out.

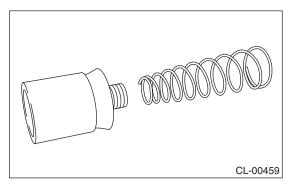

Non-turbo model


• Except Non-turbo model and STI model

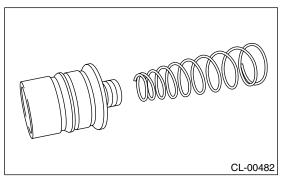
- 3) Separate the piston and piston spring.
- · Non-turbo model

Except Non-turbo model and STI model

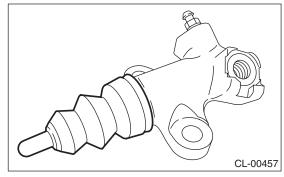
D: ASSEMBLY

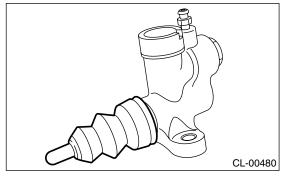

NOTE:

- Keep applying working fluid to all the parts during assembly.
- Assembly for operating cylinder of only 5MT model can be performed. That of 6MT model is a component that cannot be disassembled.


Recommended clutch fluid:

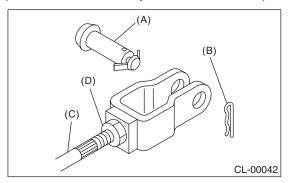
FMVSS No. 116, fresh DOT3 or 4 brake fluid


- 1) Install the piston spring to piston.
- Non-turbo model


Except Non-turbo model and STI model

- 2) Insert the piston into operating cylinder.
- 3) Install the push rod to boot.
- 4) Install the boot and push rod to operating cylinder.
- Non-turbo model

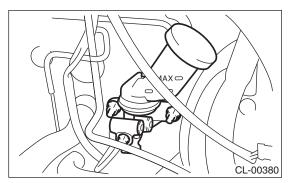
Except Non-turbo model and STI model


E: INSPECTION

- 1) Check the operating cylinder for damage. If operating cylinder is damaged, replace it.
- 2) Check the operating cylinder for fluid leakage or damage on boot. If any leakage or damage is found, replace the operating cylinder.

6. Master Cylinder

A: REMOVAL

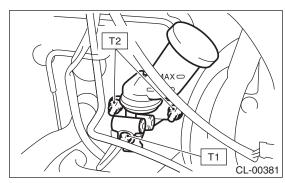

- 1) Thoroughly drain the brake fluid from reservoir tank.
- 2) Remove the snap pin, clevis pin and separate the push rod of master cylinder from clutch pedal.

- (A) Clevis pin
- (B) Snap pin
- (C) Push rod
- (D) Lock nut
- 3) Remove the air intake chamber (Non-turbo model). <Ref. to IN(H4SO)-6, REMOVAL, Air Intake Chamber.>
- 4) Remove the intercooler (Turbo model). <Ref. to IN(H4DOTC)-11, REMOVAL, Intercooler >
- 5) Disconnect the clutch pipe from master cylinder.
- 6) Remove the master cylinder and reservoir tank as a unit.

CAUTION:

Be extremely careful not to spill brake fluid. Brake fluid spilt on the vehicle body will harm the paint surface; wipe it off quickly if spilt.

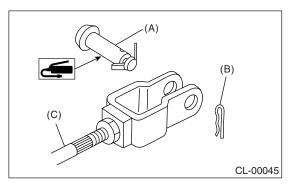
B: INSTALLATION


1) Install the master cylinder to body, and connect the clutch pipe to master cylinder.

NOTE:

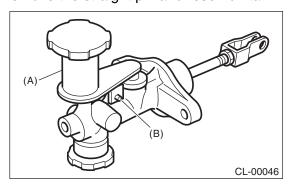
Check that the pipe is routed properly.

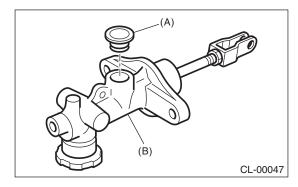
Tightening torque:


T1: 15 N·m (1.5 kgf-m, 10.8 ft-lb) T2: 18 N·m (1.8 kgf-m, 13.3 ft-lb)

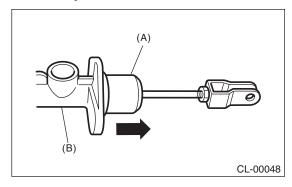
2) Connect the push rod of master cylinder to clutch pedal, and install the clevis pin and snap pin.

NOTE:


Apply grease to the clevis pin.


- (A) Clevis pin
- (B) Snap pin
- (C) Push rod
- 3) After bleeding air from the clutch system, ensure that clutch operates properly.
- <Ref. to CL-29, Clutch Fluid Air Bleeding.>
- 4) Install the air intake chamber. (Non-turbo model) <Ref. to IN(H4SO)-6, INSTALLATION, Air Intake Chamber.>
- 5) Install the intercooler. (Turbo model) <Ref. to IN(H4DOTC)-11, INSTALLATION, Intercooler.>

C: DISASSEMBLY


1) Remove the straight pin and reservoir tank.

- (A) Reservoir tank
- (B) Straight pin
- 2) Remove the oil seal.

- (A) Oil seal
- (B) Master cylinder
- 3) Move the cylinder boot backward.

- (A) Cylinder boot
- (B) Master cylinder
- 4) Remove the snap ring.

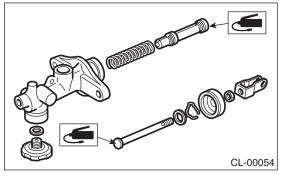
CAUTION:

Be careful when removing the snap ring to prevent the rod, washer, piston and return spring from flying out.

5) Remove the clutch damper.

D: ASSEMBLY

1) Install the clutch damper.

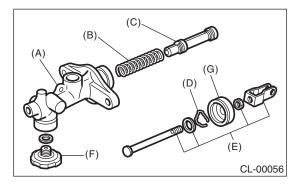

Tightening torque:

46.6 N·m (4.75 kgf-m, 34.4 ft-lb)

2) Apply a coat of grease to the contacting surfaces of the push rod and piston before installation.

Grease:

SILICONE GREASE G-40M (Part No. 004404003)

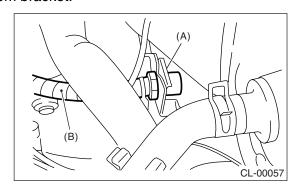

3) Assemble in the reverse order of disassembly.

Tightening torque:

10 N·m (1.0 kgf-m, 7 ft-lb)

E: INSPECTION

If any damage, deformation, wear, swelling, rust or other faults are found on the cylinder, piston, push rod, fluid reservoir, return spring, gasket, clutch damper, cylinder boot and hose replace the faulty part.



- (A) Master cylinder body
- (B) Return spring
- (C) Piston
- (D) Stop ring
- (E) Push rod ASSY
- (F) Clutch damper
- (G) Cylinder boot

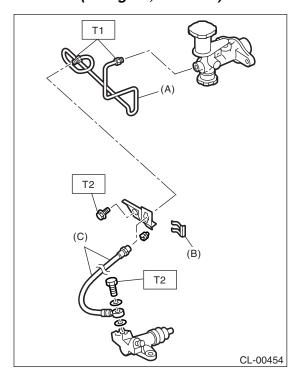
7. Clutch Pipe and Hose

A: REMOVAL

- 1) Remove the air intake chamber and air intake duct. (Non-turbo model) <Ref. to IN(H4SO)-6, RE-MOVAL, Air Intake Chamber.> <Ref. to IN(H4SO)-
- 7, REMOVAL, Air Intake Duct.>
- 2) Remove the intercooler. (Turbo model)
- <Ref. to IN(H4DOTC)-11, REMOVAL, Intercooler.>
- 3) Drain the clutch fluid. <Ref. to CL-28, Clutch Fluid.>
- 4) Remove the clutch pipe from the clutch hose and master cylinder.
- 5) Pull out the clamp, then remove the clutch hose from bracket.

- (A) Clamp
- (B) Clutch hose
- 6) Remove the hose from operating cylinder.
- 7) Remove the bracket.

B: INSTALLATION

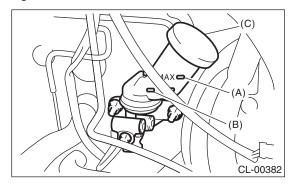

Install in the reverse order of removal.

NOTE:

Bleed air of the clutch fluid. <Ref. to CL-29, Clutch Fluid Air Bleeding.>

Tightening torque:

T1: 15 N·m (1.5 kgf-m, 10.8 ft-lb) T2: 18 N·m (1.8 kgf-m, 13.3 ft-lb)


- (A) Clutch pipe
- (B) Clip
- (C) Clutch hose

C: INSPECTION

Check the pipes and hoses for cracks, breakage, or damage. Check the joints for fluid leakage. If any cracks, breakage, damage or leakage is found, repair or replace the applicable pipe or hose.

8. Clutch Fluid A: INSPECTION

- 1) Park the vehicle on a level surface.
- 2) Inspect the fluid level using scale on the outside of the reservoir tank. If the level is below "MIN", add fluid to bring it up to "MAX", and also inspect for leakage.

- (A) Max. level
- (B) Min. level
- (C) Reservoir tank

B: REPLACEMENT

CAUTION:

- The FMVSS No. 116, fresh DOT3 or 4 brake fluid must be used.
- Cover the bleeder with waste cloth, when loosening it, to prevent brake fluid from being splashed over surrounding parts.
- Avoid mixing different brands of brake fluid to prevent degrading the quality of the fluid.
- Be careful not to allow dirt or dust to get into the reservoir tank.

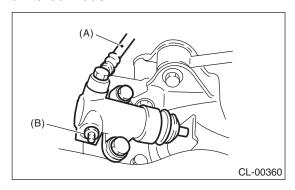
NOTE:

- During bleeding operation, keep the clutch reservoir tank filled with brake fluid to eliminate entry of air.
- · Clutch pedal operating must be very slow.
- Bleed air from the oil line with help of a co-worker.
- The amount of brake fluid required is approx. 70 m & (2.4 US fl oz, 2.5 lmp fl oz) for total clutch system.
- 1) Remove the air intake chamber. (Non-turbo model) <Ref. to IN(H4SO)-6, REMOVAL, Air Intake Chamber.>
- 2) Remove the intercooler. (Turbo model) <Ref. to IN(H4DOTC)-11, REMOVAL, Intercooler.>
- 3) Either jack-up the vehicle and place a rigid racks under it, or lift-up the vehicle.
- 4) Drain brake fluid from the reservoir tank.
- 5) Refill the reservoir tank with recommended brake fluid.

Recommended brake fluid:

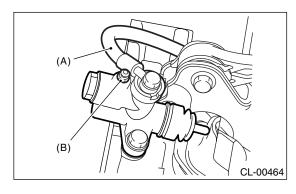
FMVSS No. 116. fresh DOT3 or 4 brake fluid

- 6) Drain all contaminated fluid in the same method as air bleeding.
- 7) Refill the brake fluid before reservoir tank becomes empty, and drain contaminated fluid again.
- 8) Repeat the above procedure until the contaminated fluid is completely drained.


9. Clutch Fluid Air BleedingA: PROCEDURE

1. EXCEPT STI MODEL

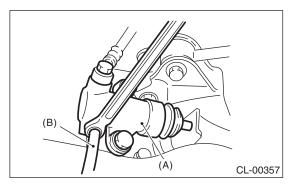
NOTE:


Bleed air from the oil line with help of a co-worker.

- 1) Remove the air intake chamber. (Non-turbo model) <Ref. to IN(H4SO)-6, REMOVAL, Air Intake Chamber.>
- 2) Remove the intercooler. (Turbo model) <Ref. to IN(H4DOTC)-11, REMOVAL, Intercooler.>
- 3) Fit one end of a vinyl tube into the air bleeder of operating cylinder and put the other end into a brake fluid container.
- Non-turbo model

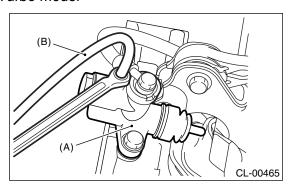
- (A) Clutch hose
- (B) Air bleeder

Turbo model


- (A) Clutch hose
- (B) Air bleeder
- 4) Slowly depress the clutch pedal and keep it depressed. Then open the air bleeder to discharge air together with the fluid.

Release the air bleeder for 1 or 2 seconds. Next, with the bleeder closed, slowly release the clutch pedal.

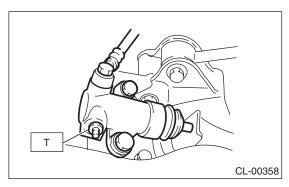
CAUTION:


Cover the bleeder with waste cloth when loosening it, to prevent brake fluid from being splashed over surrounding parts.

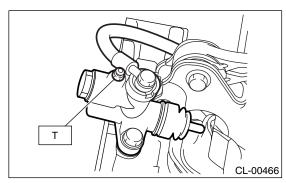
Non-turbo model

- (A) Operating cylinder
- (B) Vinyl tube

Turbo model



- (A) Operating cylinder
- (B) Vinyl tube
- 5) Repeat the procedure 4), until there are no more air bubbles in the vinyl tube.
- 6) Tighten the air bleeder.


Tightening torque:

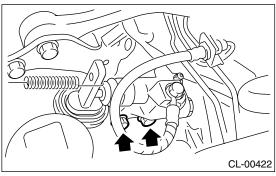
T: 7.8 N·m (0.8 kgf-m, 5.8 ft-lb)

Non-turbo model

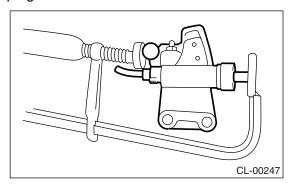
Turbo model

- 7) After depressing the clutch pedal, make sure that there are no leaks evident in the entire clutch system.
- 8) After bleeding air from the clutch system, ensure that clutch operates properly.
- 9) Install the air intake chamber. (Non-turbo model) <Ref. to IN(H4SO)-6, INSTALLATION, Air Intake Chamber.>
- 10) Install the intercooler. (Turbo model) <Ref. to IN(H4DOTC)-11, INSTALLATION, Intercooler.>

2. STI MODEL


NOTE:

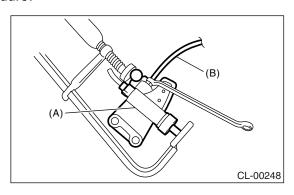
Bleed air from the oil line with help of a co-worker.


- 1) Remove the intercooler. <Ref. to IN(STI)-11, REMOVAL, Intercooler.>
- 2) Remove the operating cylinder.

NOTE:

Do not remove the clutch hose.

3) Fix the piston with clamp to avoid the piston from jumping out.



- 4) Fit one end of a vinyl tube into the air bleeder of operating cylinder and put the other end into a brake fluid container.
- 5) Slowly depress the clutch pedal and keep it depressed. Then open the air bleeder to discharge air together with the fluid.

Release the air bleeder for 1 or 2 seconds. Next, with the bleeder closed, slowly release the clutch pedal.

NOTE:

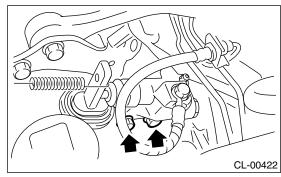
Set the air breather screw position higher than the tip of operating cylinder when performing this procedure.

- (A) Operating cylinder
- (B) Vinyl tube
- 6) Repeat these steps until there are no more air bubbles in the vinyl tube.

CAUTION:

Cover the bleeder with waste cloth when loosening it, to prevent brake fluid from being splashed over surrounding parts.

7) Tighten the air bleeder.


Tightening torque:

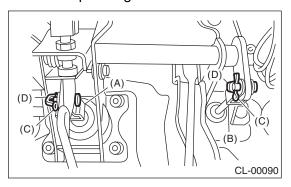
7.8 N·m (0.8 kgf-m, 5.8 ft-lb)

8) Install the operating cylinder.

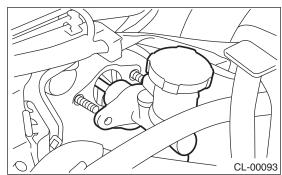
Tightening torque:

41 N·m (4.2 kgf-m, 30.2 ft-lb)

9) After depressing the clutch pedal, make sure that there are no leaks evident in the entire system.


- 10) After bleeding air from the system, ensure that clutch operates properly.

 11) Install the intercooler. <Ref. to IN(H4DOTC)11, INSTALLATION, Intercooler.>


10.Clutch Pedal

A: REMOVAL

- 1) Remove the steering column. <Ref. to PS-23, REMOVAL, Tilt Steering Column.>
- 2) Disconnect the connectors from stop light and clutch switches.
- 3) Remove the snap pins which secure lever to push rod and operating rod.
- 4) Remove the clevis pins which secure lever to push rod and operating rod.

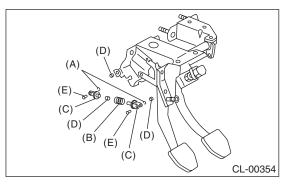
- (A) Operating rod
- (B) Push rod
- (C) Snap pin
- (D) Clevis pin
- 5) Remove the air intake chamber. (Non-turbo model) <Ref. to IN(H4SO)-6, REMOVAL, Air Intake Chamber.>
- 6) Remove the intercooler. (Turbo model) <Ref. to IN(H4DOTC)-11, REMOVAL, Intercooler.>
- 7) Remove the nut which secures clutch master cylinder.

8) Remove the bolts and nuts which secure brake and clutch pedals, and remove the pedal assembly.

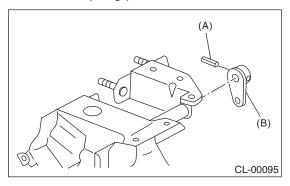
B: INSTALLATION

1) Install in the reverse order of removal.

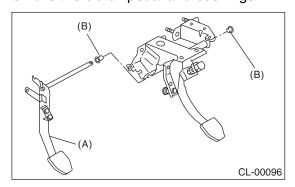
NOTE:


Always use new clevis pins.

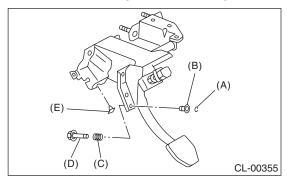
2) Adjust the clutch pedal after installation. <Ref. to CL-33, ADJUSTMENT, Clutch Pedal.>


3) Adjust the clutch switch (Starter interlock). <Ref. to CL-37, ADJUSTMENT, Clutch Switch.>

C: DISASSEMBLY


1) Remove the clips, assist spring, rod and bushing.

- (A) Clip
- (B) Assist spring
- (C) Assist rod
- (D) Bushing
- (E) Clevis pin
- 2) Remove the spring pin and lever.



- (A) Pin
- (B) Lever
- 3) Remove the clutch pedal and bushings.

- (A) Clutch pedal
- (B) Bushing

4) Remove the stopper, clip, O-ring, rod S, and then remove the spring S and bushing S.

- (A) Clip
- (B) Bushing S
- (C) Spring S
- (D) Rod S
- (E) Stopper
- 5) Remove the stoppers from clutch pedal.
- 6) Remove the clutch pedal pad. (Non-turbo model)

D: ASSEMBLY

- 1) Attach the stopper, etc. to pedal bracket temporarily.
- 2) Clean inside of bores of clutch pedal and brake pedal, apply grease, and set bushings into bores.

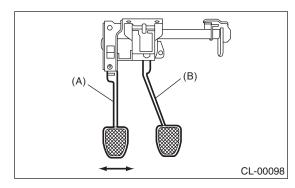
Grease:

SUNLIGHT 2 (Part No. 003602010) or equivalent

3) Align bores of pedal bracket, clutch pedal and brake pedal, attach the brake pedal return spring, assist rods, spring, and bushing.

NOTE:

Clean up inside of bushings and apply grease before installing the spacer.


E: INSPECTION

Move the clutch pedal pads in the lateral direction with a force of approximately 10 N (1 kgf, 2 lbf) to ensure pedal play is in specified range.

CAUTION:

If excessive movement is noted, replace the bushings with new ones.

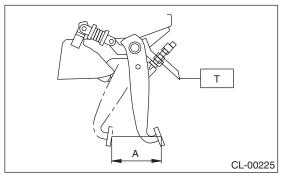
Play of clutch pedal: Service limit 5.0 mm (0.197 in) or less

- (A) Clutch pedal
- (B) Brake pedal

F: ADJUSTMENT

1) Turn the lock nuts until clutch pedal full stroke length is within specifications.

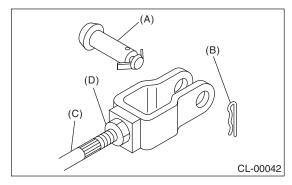
CAUTION:

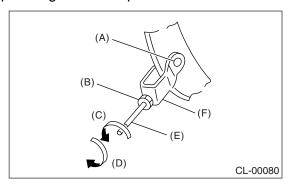

Do not attempt to turn the clutch switch to adjust clutch pedal full stroke length.

NOTE:

If lock nuts cannot adjust the clutch pedal full stroke length to specifications, turn the master cylinder push rod to adjust it.

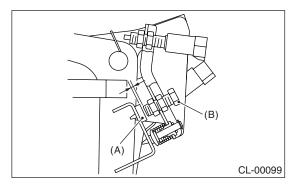
Clutch pedal full stroke A: 130 — 135 mm (5.12 — 5.31 in)


Tightening torque (Clutch switch lock nut): T: 8 N⋅m (0.8 kgf-m, 5.9 ft-lb)

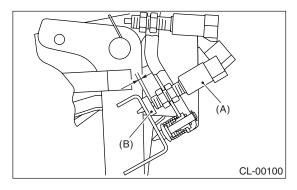

2) If the full stroke is out of specifications, loosen the clutch stopper nut (model without cruise control) or clutch switch lock nut (model with cruise control) to adjust.

Tightening torque: 8 N·m (0.8 kgf-m, 5.8 ft-lb)

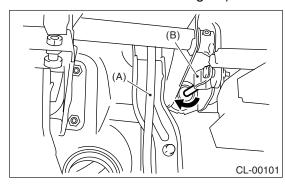
3) Loosen the push rod lock nut.



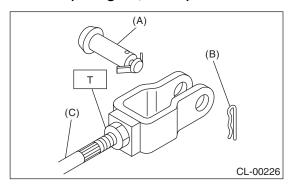
- (A) Clevis pin
- (B) Snap pin
- (C) Push rod
- (D) Push rod lock nut
- 4) Turn the push rod to adjust.
 - (1) Make sure that the clutch pedal contacts the stopper bolt side (model without cruise control) or the clutch switch side (model with cruise control) when releasing the clutch pedal.
 - (2) Make sure that the clutch pedal contacts clutch pedal bracket stopper, when fully depressing the clutch pedal.



- (A) Clevis hole
- (B) Push rod lock nut
- (C) Shortening direction
- (D) Lengthening direction
- (E) Push rod
- (F) Clevis
- 5) Turn the push rod to shorten until the clearance is made at the stopper bolt side (model without cruise control) or the clutch switch side (model with cruise control).

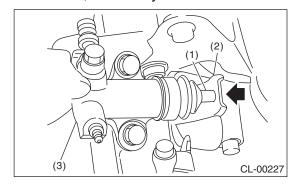

· Model without cruise control

- (A) Stopper
- (B) Stopper bolt
- · Model with cruise control

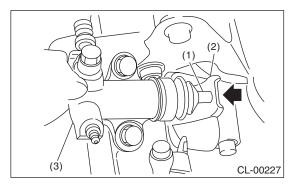


- (A) Clutch switch
- (B) Stopper
- 6) Turn the push rod to lengthen until the clutch pedal contacts the stopper bolt (model without cruise control) or clutch switch (model with cruise control).
- 7) Turn the push rod further 270° to shorten (in the arrow direction as shown in the figure).

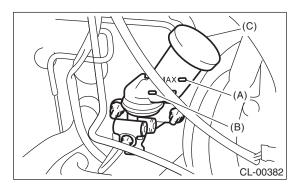
- (A) Accelerator pedal
- (B) Clevis
- 8) Move the clevis pin to the right and left to make sure it moves smoothly.
- 9) Tighten the push rod lock nut.


Tightening torque (Push rod lock nut): T: 10 N m (1.0 kgf-m, 7 ft-lb)

- (A) Clevis pin
- (B) Snap pin
- (C) Push rod
- 10) Depress and release the clutch pedal two to three times to ensure that clutch pedal and release fork operates smoothly. If the clutch pedal and release fork do not operate smoothly, bleed air from the clutch hydraulic system. <Ref. to CL-29, Clutch Fluid Air Bleeding.>
- 11) Measure the clutch pedal full stroke length again to ensure that it is within specifications. If it is not, repeat adjustment procedures again from the beginning.


Clutch pedal full stroke: 130 — 135 mm (5.12 — 5.31 in)

12) Push the release lever until operating cylinder push rod retracts. Ensure that clutch fluid level in reservoir tank increases. If the clutch fluid level increases, the hydraulic clutch is properly adjusted; if fluid level does not increase or push rod does not retract, replace the master cylinder with a new one. <Ref. to CL-25, Master Cylinder.>


- (1) Push rod
- (2) Release lever
- (3) Operating cylinder

13) Push the release lever until operating cylinder push rod retracts. Check that the clutch fluid level in reservoir tank increases.

- (1) Push rod
- (2) Release lever
- (3) Operating cylinder
- 14) If the clutch fluid level increases, hydraulic clutch play is correct.
- 15) If the clutch fluid level does not increase or push rod does not retract, clutch pedal must be readjusted.
- 16) Check the fluid level on the outside of the reservoir tank. If the level is below "MIN", add clutch fluid to bring it up to "MAX".

Recommended clutch fluid: FMVSS No. 116, fresh DOT 3 or DOT 4 brake fluid

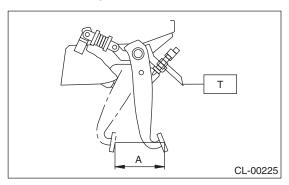
- (A) Max. level
- (B) Min. level
- (C) Reservoir tank

11.Clutch Switch

A: REMOVAL

- 1) Disconnect the ground cable from battery.
- 2) Remove the instrument panel lower cover.
- 3) Disconnect the connector from clutch switch.
- 4) Remove the clutch switch.

B: INSTALLATION

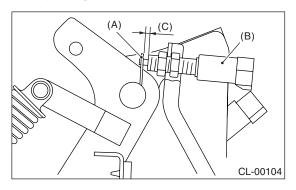

1. CLUTCH SWITCH (CRUISE CONTROL)

1) Move the clevis pin of the push rod right and left and hold where it moves smoothly, then measure stroke of clutch pedal.

Specified clutch pedal full stroke A: 130 — 135 mm (5.12 — 5.31 in)

Tightening torque:

T: 8 N m (0.8 kgf-m, 5.9 ft-lb)

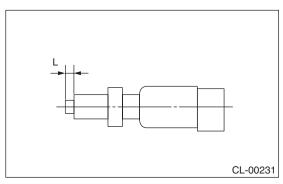


- 2) If the clutch pedal stroke is out of specification, adjust the stroke. <Ref. to CL-33, ADJUSTMENT, Clutch Pedal.>
- 3) Connect clutch switch connector.

2. CLUTCH SWITCH (STARTER INTER-LOCK)

- 1) Fully depress the clutch pedal.
- 2) Install the clutch pedal plate and clutch switch so that the gap between them is 3 3.5 mm (0.12 0.14 in), and then tighten the lock nut.

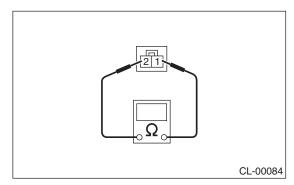
Tightening torque: 8 N·m (0.8 kgf-m, 5.9 ft-lb)



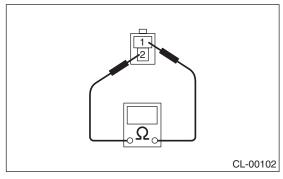
- (A) Plate
- (B) Clutch switch
- (C) 3 3.5 mm (0.12 0.14 in)
- 3) Connect the clutch switch connector.
- 4) Confirm that the engine does not start when the clutch pedal is released.
- 5) Confirm that the engine starts when the clutch pedal is fully depressed.

C: INSPECTION

1) If the clutch switch (cruise control) does not operate properly (or if it does not stop at the specified position), replace with a new one.

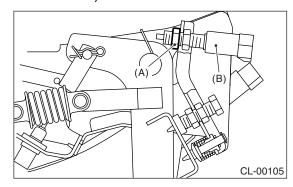

Specified position L: 2+1.5 mm (0.079+0.059 in)

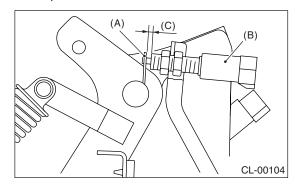
- 2) Check the clutch switch continuity. If the resistance is not as specified, replace the switch.
 - (1) Disconnect the clutch switch connector.
 - (2) Measure the resistance between 1 and 2 of switch terminal.


Clutch switch (Cruise control)

Terminals/Specified resistance When clutch pedal depressed: No. 1 — No. 2/More than 1 $M\Omega$ When clutch pedal not depressed: No. 1 — No. 2/Less than 1 Ω

• Clutch switch (Starter interlock)


Terminals/Specified resistance When clutch pedal depressed: No. 1 — No. 2/Less than 1 Ω When clutch pedal not depressed: No. 1 — No. 2/More than 1 $M\Omega$


- 3) Confirm that the engine does not start when the clutch pedal is not depressed. If the engine starts, adjust the clutch switch, and inspect the starter interlock circuit.
- 4) Confirm that the engine starts when the clutch pedal is fully depressed. If the engine does not start, adjust the clutch switch, and inspect the starter interlock circuit.

D: ADJUSTMENT

1) Loosen the clutch switch mounting lock nut (Starter interlock).

- (A) Lock nut
- (B) Clutch switch (Starter interlock)
- 2) Fully depress the clutch pedal.
- 3) Adjust the clutch pedal plate and clutch switch so that the gap between them is 3 3.5 mm (0.12 0.14 in).

- (A) Plate
- (B) Clutch switch (Starter interlock)
- (C) 3 3.5 mm (0.12 0.14 in)
- 4) Tighten the lock nut.

Tightening torque: 8 N·m (0.8 kgf-m, 5.9 ft-lb)

12.General Diagnostic Table

A: INSPECTION

1. CLUTCH

Symptom	Possible cause	Corrective	
1. Clutch slippage	(a) Clutch facing smeared by oil	Replace.	
It is hard to perceive clutch slippage in	(b) Worn clutch facing	Replace.	
the early stage, but pay attention to the	(c) Deteriorated diaphragm spring	Replace.	
following symptoms	(d) Distorted pressure plate or flywheel	Correct or replace.	
Engine speed up when shifting.High speed driving is impossible; espe-	(e) Defective release bearing holder	Correct or replace.	
cially rapid acceleration impossible and	3		
vehicle speed does not increase in pro-			
portion to an increase in engine speed.			
 Power falls, particularly when ascend- 			
ing a slope, and there is a smell of burn-			
ing of the clutch facing.			
Method of testing: Put the vehicle in stationary condition with parking brake			
fully applied. Disengage the clutch and			
shift the transmission gear into the first.			
Gradually allow the clutch to engage			
while gradually increasing the engine			
speed. The clutch function is satisfactory			
if the engine stalls. However, the clutch is			
slipping if the vehicle does not start off			
and the engine does not stall.	(-) M/	Deple and the columbia	
Clutch drags. As a symptom of this trouble, a harsh	(a) Worn or rusty clutch disc hub spline	Replace the clutch disc.	
scratching noise develops and control	(b) Excessive deflection of clutch disc facing	Correct or replace.	
becomes quite difficult when shifting	(c) Seized crankshaft pilot needle bearing	Danlage	
gears. The symptom becomes more		Replace.	
apparent when shifting into the first gear.	(d) Cracked clutch disc facing	Replace.	
However, because much trouble of this	(e) Stuck clutch disc (smeared by oil or water)	Replace.	
sort is due to defective synchronization	water)		
mechanism, carry out the test as described after.			
Method of testing: <ref. cl-39,<="" td="" to=""><td></td><td></td></ref.>			
DIAGNOSTIC DIAGRAM OF CLUTCH			
DRAG, INSPECTION, General Diagnos-			
tic Table.>			
It may be judged as insufficient disen-			
gagement of clutch if any noise occurs			
during this test.	(a) Adhancian of all on the facing	Davida a tha alvitala dilas	
3. Clutch chatters. Clutch chattering is an unpleasant vibra-	(a) Adhesion of oil on the facing	Replace the clutch disc.	
tion to the whole body when the vehicle is	(b) Weak or broken damper spring	Replace the clutch disc.	
just started with clutch partially engaged.	(c) Defective facing contact or excessive disc wear	Replace the defective clutch disc.	
	(d) Warped pressure plate or flywheel	Correct or replace.	
	(e) Loose disc rivets	Replace the clutch disc.	
	(f) Loose engine mounting	Retighten or replace the mounting.	
	(g) Improper adjustment of pitching stop- per	Adjustment.	

General Diagnostic Table

Symptom	Possible cause	Corrective
4. Noisy clutch The noise is generated when the clutch is	(a) Broken, worn or unlubricated release bearing	Replace the release bearing.
disengaged, engaged, or partially	(b) Insufficient lubrication of pilot bearing	Apply grease or replace the pilot bearing.
engaged.	(c) Loose clutch disc hub	Replace the clutch disc.
	(d) Loose damper spring retainer	Replace the clutch disc.
	(e) Deteriorated or broken damper spring	Replace the clutch disc.
5. Clutch grabs.	(a) Grease or oil on facing	Replace the clutch disc.
When starting the vehicle with the clutch	(b) Deteriorated cushioning spring	Replace the clutch disc.
partially engaged, the clutch engages suddenly and the vehicle jumps instead of making a smooth start.	(c) Worn or rusted spline of clutch disc or main shaft	Take off rust, apply grease or replace the clutch disc or main shaft.
of making a smooth start.	(d) Deteriorated or broken damper spring	Replace the clutch disc.
	(e) Loose engine mounting	Retighten or replace the mounting.
	(f) Deteriorated diaphragm spring	Replace.

2. CLUTCH PEDAL

Trouble	Corrective action
Insufficient pedal play	Adjust pedal play.
Clutch pedal free play insufficient	Adjust pedal free play.
Excessively worn and damaged pedal shaft and/or bushing	Replace the bushing and/or shaft with a new one.

3. DIAGNOSTIC DIAGRAM OF CLUTCH DRAG

	Step	Check	Yes	No
1	CHECK GEAR NOISE. 1) Start the engine. 2) Disengage the clutch and shift quickly from neutral to reverse in idling condition.	Is there any abnormal noise from the transmission gear?	Go to step 2.	Clutch is normal.
2	CHECK GEAR NOISE. Disengage the clutch at idle and shift from neutral to reverse within 0.5 — 1.0 seconds.	Is there any abnormal noise from the transmission gear?	Go to step 3.	Defective trans- mission or exces- sive clutch drag torque. Inspect the pilot bearing, clutch disc, trans- mission and clutch disc hub spline.
3	CHECK GEAR NOISE. 1) Disengage the clutch at idle and shift from neutral to reverse within 0.5 — 1.0 seconds. 2) With the clutch disengaged, shift from N to R, R to N several times.	Is there any abnormal noise from the transmission gear?	Defect in clutch disengaging. Inspect the clutch disc, clutch cover, clutch release, and clutch pedal free play.	Clutch and fly- wheel seizure. Inspect the clutch disc, spline of clutch disc hub.